
1

Developing a Minimal Language Server for the
Frege Programming Language: an Experience

Report
Thibault Gagnaux

Supervisor: Prof. Dierk König
University of Applied Sciences and Arts Northwestern Switzerland

Institute of Mobile and Distributed Systems
Windisch, Switzerland
tgagnaux@gmail.com

Abstract—Language servers provide features such as code com-
pletion and documentation on hover to text editors and integrated
developer environments. These features help developers to write
software more efficiently but take a significant time to build. The
language server protocol addresses this problem by allowing to
write a language server once and reuse it with many popular text
editors. In this experience report, I present the steps needed to
develop a minimal language server for the Frege programming
language communicating with a Visual Studio Code plugin over
the language server protocol. I start with Microsoft’s example
language server and gradually extend it. Firstly, I port the
example server from Typescript to Java and secondly, I integrate
the Frege compiler to show compiler errors and type signatures
on hover. This experience report should help others to estimate
the work of developing a language server and how to approach
this task.

Index Terms—language server, ide, frege

I. INTRODUCTION

Integrated development environments (IDEs) help develop-
ers to write software faster. IDEs are enhanced text editors with
extra features to basic text editing. Among others, they show
warnings and errors after every source code change, provide
additional information while hovering over a code expression
and make suggestions to autocomplete your code. These
features are the most often used actions by developers besides
the common copy, paste, delete and save commands [1].

The abovementioned features are often powered by a lan-
guage server, a standalone program which analyses the source
code and returns the result to the IDE. Developing a language
server is tightly coupled to one programming language and
one IDE. Jetbrains, a company specialised in creating IDEs,
currently offers more than 10 IDEs, each one targeted for a
different programming language. As a result, m programming
languages and n IDEs require m×n language servers as shown
in Table I.

The integration of multiple IDEs is thus a considerable effort
because the development of a single language server is already
a time-consuming task. Microsoft has identified this problem
and standardised the communication between a client, e.g. an
IDE and a language server, with the language server protocol
(LSP) [2]. As a result, every language server implementing the

TABLE I
THE m PROGRAMMING LANGUAGE AND n IDE MATRIX PROBLEM

RESULTS IN m× n LANGUAGE SERVERS.

Visual Studio Code Eclipse · · · IDE n

Java Language Server 1 Language Server 2 · · · Language Server n
Python Language Server n+ 1 Language Server n+ 2 · · · Language Server n× 2

...
. . .

. . .
. . .

...
Language m · · · · · · · · · Language Server m× n

LSP can be used with any IDE implementing the LSP. This
reduces the m × n matrix problem to m reusable language
servers + n reusable IDE plugins as depicted in Table II.

TABLE II
IF BOTH THE LANGUAGE SERVER AND THE IDE SUPPORT THE LANGUAGE

SERVER PROTOCOL (LSP) THEN m PROGRAMMING LANGUAGES AND n
IDES NEED m LANGUAGE SERVERS + n IDE PLUGINS.

Visual Studio Code Eclipse · · · IDE n

Java Language Server 1 + Plugin 1 Language Server 1 + Plugin 2 · · · Language Server 1 + Plugin n
Python Language Server 2 + Plugin 1 Language Server 2 + Plugin 2 · · · Language Server 2 + Plugin n

...
. . .

. . .
. . .

...
Language m · · · · · · · · · Language Server m + Plugin n

However, many IDE plugins still contain server specific
configurations in practice, resulting in more than n needed
plugins. Nevertheless it is still beneficial that the feature-
powering language server is reusable because it takes much
more time to develop the language server than the IDE plugin.

In this experience report, I present the steps needed to
develop a minimal language server [3] for the programming
language Frege [4] and its corresponding plugin [5] for the
Visual Studio Code editor using the LSP. Frege is a purely
functional programming language, which compiles to Java [6]
and can therefore be used with every Java project. Given its
niche programming language status, Frege is currently still
missing a language server implementing the LSP. On the
plugin side, I chose Visual Studio Code because according
to the StackOverflow survey 2021 [7] it is the most used IDE
across all developers.

The rest of the paper is structured as follows: Section II
shows which language tools already exist for Frege. Section III
gives a high-level overview of the Frege language server and
its components. Section IV and Section V explain the language

2

server protocol and Frege Java interoperability boundaries and
demonstrate how I gradually extended the language server.
In Section VI the features and limitations of the final Frege
language server are discussed. I conclude with Section VII.

II. RELATED WORK

There are already two existing IDE dependent Frege lan-
guage plugins: Firstly, Ingo Wechsung, the creator of Frege,
has developed a plugin for the Eclipse IDE [8] called
fregIDE [9]. It depends on the IDE Metatooling Platform [10],
which aims to improve the development of language features
in Eclipse. Secondly, for IntelliJ IDEA, an IDE by Jetbrains,
there is active development on a language plugin [11], which is
based on IntelliJ’s Program Structure Interface (PSI). Further-
more, the Frege read-eval-print-loop (REPL) [12] provides an
interactive Frege environment, which allows to execute Frege
code either in the terminal or in the browser1. It is of special
interest because it directly uses the Frege compiler to power
similar features to a language server.

The three abovementioned language tools share the same
limitation: they only work within their intended IDE and
are thus not reusable. Developing a Frege language server
conforming to the language server protocol removes that
limitation and makes the Frege language features available to
every editor supporting the language server protocol such as
Visual Studio Code, Eclipse, Neovim, Emacs, Atom, THEIA,
Sublime Text and many more2.

III. CONCEPT

I want to illustrate the Frege language server’s architecture
with the help of the hover feature. Given the simple Frege file
Frobnicate.fr in Listing 1.

1 module Frobnicate where
2

3 frob a = (a * a, "Frege rocks")

Listing 1: The frob function defined in the Frobnicate.fr
file.

Whenever I hover over the function frob on line 3 in Visual
Studio Code, I wish to see its function signature Num a =>
a -> (a, String) in an overlay as shown in Figure 1.

Fig. 1. Hovering over the frege function frob in Visual Studio Code shows
its type signature frob :: Num a => a -> (a, String).

1See http://try.fregelang.org
2See https://microsoft.github.io/language-server-protocol/implementors/to

ols/

Hence the hover feature needs at least the following three
components as depicted in Figure 2:

The Visual Studio Code Plugin making the hover request.
The Frege Language Server receiving the request.
The Frege Compiler evaluating the file and returning the

type signature.

VS Code Frege Language Server Frege Compiler

hover()

typeSignature

Fig. 2. Hover sequence diagram: Hovering over a function name in Visual
Studio Code (VS Code) calls the Frege Language Server, which calls the
Frege Compiler to infer the type signature and returns it to Visual Studio
Code.

The abovementioned three components come with two
boundary integration problems: the Visual Studio Code Plugin
and the Frege language server communicate over the language
server protocol and the Frege language server needs to interact
with Frege code since the Frege compiler is written in Frege. I
solved these two integration problems iteratively with multiple
proof of concepts and will present them in the next two
Sections.

IV. LANGUAGE SERVER PROTOCOL BOUNDARY

The language server protocol uses a remote procedure call
JSON (JSON-RPC) message format exchanged between a
client and a server. The protocol is divided into a header and
content part and specifies three types of messages:

A request message which must be answered with a response
message.

A response message for the request message.
A notification message which expects no response message

and can thus be treated like an event.

With these three types of messages the language server
protocol defines the reusable set of features. Among others,
these reusable features include general initialisation, window,
text synchronisation, diagnostics and multiple language feature
messages. For example, hovering over the frob function in
Listing 1 in Visual Studio Code sends the message shown in
Listing 2 to the Frege Language server. The full list of features
are documented on the specifications website3.

3See https://microsoft.github.io/language-server-protocol/specifications/spe
cification-current/

http://try.fregelang.org
https://microsoft.github.io/language-server-protocol/implementors/tools/
https://microsoft.github.io/language-server-protocol/implementors/tools/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/

3

Content-Length: 216\r\n
\r\n

"jsonrpc": "2.0",
"id": 1,
"method": "textDocument/hover",
"params": {

"textDocument": {
"uri":

"file:///Users/.../Frobnicate.fr"↪→

},
"position": {

"line": 2,
"character": 2

}
}

Listing 2: The frob function defined in the Frobnicate.fr
file.

A. First Proof of Concept

As a first step to understand the language server protocol,
I followed Microsoft’s tutorial [13] on how to write a basic
language server implementing the language server protocol.
The basic language server is written in Typescript and provides
diagnostics and autocompletion for .txt files as shown in
Figure 3.

Fig. 3. The basic language server provides two features: Firstly, it publishes
diagnostics for uppercase words of length 2 and more. Secondly, if you type
the character j or t it provides the autocompletion JavaScript or TypeScript
respectively.

Implementing the language server protocol from scratch
takes a considerable effort. Besides, most messages are ex-
changed asynchronously, which adds complexity. As an al-
ternative, there are generic library implementations in dif-
ferent programming languages available. They abstract the
JSON-RPC messages into data structures and map the asyn-
chronous message exchange to the programming language’s
asynchronous computing model. For example, the basic lan-
guage server uses the VSCode Language Server - Node [14]
library. The autocompletion feature is then abstracted to the
code shown in Listing 3.

connection.onCompletion(
(_textPos: TextDocumentPositionParams):

CompletionItem[] => {↪→

return [
{
label: 'TypeScript',
kind: CompletionItemKind.Text,
data: 1
},

{
label: 'JavaScript',
kind: CompletionItemKind.Text,
data: 2
}

];
}

);

Listing 3: The autocompletion feature using the VSCode
Language Server - Node [14] library. It abstracts the lan-
guage server JSON-RPC message to Typescript types, such
as CompletionItem[] and CompletionItemKind.Text.

B. Second Proof of Concept

Frege compiles to Java. As a result, Java code can call Frege
code and Frege code can use Java code. Consequently, I had to
make a choice whether to write the Frege Language Server in
Java or Frege. Choosing Frege makes the integration with the
Frege compiler easier but has the considerable disadvantage
that the JSON-RPC message protocol needs to be implemented
from scratch. On the other hand, writing the Frege Language
Server in Java, gives access to the well-established LSP4J [15]
library, which provides a Java binding for the language server
protocol.

As a second step, I thus replaced the Typescript basic
language server with a Java language server [16] using LSP4J.
The autocompletion feature from Listing 3 can be easily
mapped using LSP4J as shown in Listing 4.

@Override
public

CompletableFuture<Either<List<CompletionItem>,
CompletionList>> completion(CompletionParams
position) {

↪→

↪→

↪→

List<CompletionItem> completionItems =
Arrays.asList(↪→

createTextCompletionItem("TypeScript", 1),
createTextCompletionItem("JavaScript", 2)

);
return CompletableFuture.completedFuture(
Either.forLeft(completionItems));

}

Listing 4: The autocompletion feature using the LSP4J [15]
Java library. LSP4J abstracts the language server JSON-
RPC message to Java types, such as CompletionItem

and CompletionParams and uses the CompletableFuture

class for asynchronous computations.

The main change is that LSP4J uses the
CompletableFuture class to account for the asynchronous
compute model. Hence, the most time-consuming changes
were not porting the autocompletion and diagnostic features
to Java but starting the server. While the Node library also
includes a node server out of the box where the client

4

and the server connect through interprocess communication
(IPC), LSP4J does not. Instead, the client starts the server by
calling an executable and they communicate over standard
input and output. Maven [17] and Gradle [18] are by far
the most popular Java build systems to create an executable
Java application according to the Jetbrains state of developer
ecosystem report 2021 [19]. I chose Gradle to create operating
system specific start scripts. The Visual Studio Code client
then starts a new process which executes the start scripts to
run the basic language server as shown in Listing 5.

let javaServerOptions: ServerOptions = {
run: { command: "sh", args: [

javaLanguageServerStartScriptPath] },↪→

debug: {
command: "sh", args: [

javaLanguageServerStartScriptPath]↪→

}
}

client = new LanguageClient(
'basicLanguageServer',
'Basic Language Server',
javaServerOptions,
clientOptions

);
client.start();

Listing 5: Starting a basic Java language
server from the Visual Studio Code client. The
javaLanguageServerStartScript is generated with
the Gradle task startScripts [20].

Debugging the basic Java server requires some tweaking
as well. Two steps are needed: Firstly, the Java process must
be started in debug mode on an exposed TCP/IP port and
secondly a debug attach configuration with a matching port
must be specified in Visual Studio Code’s launch.json file
as shown in Listing 6.

{
"type": "extensionHost",
"request": "launch",
"name": "Launch Client",
"runtimeExecutable": "${execPath}",
"args": [

"--extensionDevelopmentPath=${workspaceRoot}"
],

↪→

↪→

"env": {
"JAVA_OPTS":

"-agentlib:jdwp=transport=dt_socket,server= c
y,suspend=n,address=localhost:6008,quiet=y",

↪→

↪→

},
"outFiles": [

"${workspaceRoot}/client/out/**/*.js"],↪→

"preLaunchTask": {
"type": "npm",
"script": "watch"

}
},
{
"type": "java",
"name": "Attach to Java Server",
"request": "attach",
"hostName": "localhost",
"port": 6008

}

Listing 6: The two needed launch tasks to debug the basic Java
language server: The Launch Client task starts the Java process
in debug mode on port 6008. Please take special note that the
option quiet=y is necessary. The Attach to Java Server task
then connects the debugger to the listening Java process on
port 6008.

V. FREGE JAVA INTEROPERABILITY BOUNDARY

Given a working basic Java language server, only one
boundary remains to build a Frege language server: Calling
the Frege compiler, which means calling Frege Code from
Java. Listing 7 shows the generated Java code of the frob a

= (a * a, "Frege rocks") function from the Frege file
Frobnicate.fr depicted in Listing 1.

// ...
// Java and Frege imports removed for brevity
final public class Frobnicate {

final public static <α> PreludeBase.TTuple2<α,
String/* <Character> */> frob(final
PreludeBase.CNum<α> ctx$1,

↪→

↪→

final Lazy<α> arg$1) {
return PreludeBase.TTuple2.<α, String/*

<Character> */>mk(↪→

Thunk.<α>shared((Lazy<α>) (() ->
ctx$1.ƒ$star(arg$1, arg$1))),↪→

Thunk.<String/* <Character> */>lazy("Frege
rocks"));↪→

}
}

Listing 7: The generated Java code by the Frege compiler from
the Frobnicate.fr shown in Listing 1.

The generated Java code from Frege helps a little on how we
can call the frob function. The first argument of the Java frob
function has the type PreludeBase.CNum. This corresponds
to the Frege type class Num and therefore the second argument
needs to be a value of the type class Num. But the type of that
value is Lazy. Fortunately, the underlying topic of Thunks and
Boxes is well documented on the Frege wiki, which provides

5

the solution: ”To get a Lazy<R> of a value with type R, pass
the value to Thunk.<R>lazy” [21]. Listing 8 shows a passing
test case of how we can call the Frege frob function in Java.

@Test
void can_call_frobnicate() {

int expectedNumber = 4;
String expectedString = "Frege rocks";
TTuple2<Integer, String> actual =

Frobnicate.frob(PreludeBase.INum_Int.it,
Thunk.lazy(2)).call();

↪→

↪→

assertEquals(expectedNumber, actual.mem1.call());
assertEquals(expectedString, actual.mem2.call());

}

Listing 8: A Java test case which shows how to call the
Frege frob a = (a, "Frege rocks") function introduced
in Listing 1 from Java.

With that knowledge, I extended my basic Java language
server to call a Frege function: Whenever the character f is
typed, the autocompletion feature now provides the ”Frege
rocks” suggestion.

However, calling Frege from Java has the constraint that the
Frege code must first be compiled to Java. The automation of
this step means a significant change to the Gradle build tool
process because the compileFrege task becomes the new root
of the Gradle Java plugin’s task dependency graph shown in
Figure 4.

Fig. 4. The compileFrege task marks the new root dependency in the Gradle
Java plugin’s task dependency graph. A simplified version is shown here.
See [22] for all tasks and their dependencies.

Therefore, I built a custom Frege gradle plugin [23], which
adds the needed compileFrege Gradle task. The compileFrege
downloads the specified version of the Frege compiler and
compiles all *.fr files to the build/classes/frege output
directory.

With all that in place, I was ready to call the Frege compiler
to get the type signature of the frob function, which I will
describe in the following Section.

A. The Frege Compiler

In order to call the Frege compiler I reused the logic from
the Frege REPL project [12]. The Frege compiler is accessed
through the FregeRepl and the FregeInterpreter mod-
ules as depicted in Figure 5.

Language Server Repl Interpreter Compiler

hover()

typeSignature

Repl.run

Interpreter.run

FregeFrege

JavaJava

Fig. 5. The Frege language server accesses the Frege compiler through the
Frege Repl and Frege Interpreter modules whenever Visual Studio Code sends
a hover() request as shown in Figure 2.

Monad transformers [24] are the driving concept behind
the FregeRepl and FregeInterpreter modules as can be
seen from the type definitions in Listings 9 and 10. The
Interpreter reads an InterpreterConfig and saves the
computations in InterpreterState by combining the reader
and state monad. The Repl, on the other hand, only saves
the ReplEnv with the help of the state monad. However,
the ReplEnv data type has both a config and state field,
which become inputs for the Interpreter. As a result, the
Repl can use the Interpreter, which I leverage in my
typeSignature function shown in Listing 11.

type InterpreterState = StateT (MutableIO
InterpreterClassLoader) StIO↪→

newtype Interpreter result =
Interpreter { un :: ReaderT InterpreterState

InterpreterConfig result }↪→

Listing 9: The Interpreter monad transformer type defined
in the FregeInterpreter module.

6

data ReplEnv = ReplEnv
{ lastJavaGenSrc :: Maybe String
, lastExternalScript :: Maybe String
, opts :: ReplOpts
, config :: InterpreterConfig
, lineStart :: Int
, state :: MutableIO InterpreterClassLoader
}

data Repl a = Repl {un :: StateT ReplEnv IO a}

Listing 10: The Repl monad transformer type defined in the
FregeInterpreter module.

typeSignature :: String -> ReplEnv -> IO (Maybe
String, ReplEnv)↪→

typeSignature fname env = Repl.run (evalType fname)
env↪→

evalType :: String -> Repl (Maybe String)
evalType expr = do
env <- Repl.get
res <- liftIO $ fst <$> Interpreter.run (typeof

expr) env.config env.state↪→

case res of
Left _ -> return Nothing
Right typ -> return $ Just typ

Listing 11: The typeSignature function, which combines
the two monad transformers Repl and Interpreter to return
the type signature of an expression.

As a last step, I need to retrieve the result from the
typeSignature function and return it in the LSP4J Java
hover function to Visual Studio Code as introduced in Fig-
ure 2. Since the typeSignature function has type IO, I
can only retrieve that in an impure way with the help of the
PreludeBase.TST.performUnsafe function. As a result,
all computations in Frege remain pure and become impure
once they cross the Frege Java boundary.

VI. DISCUSSION

Currently, the Frege language server provides two small
features: It shows compiler warnings and errors when opening
or saving a single .fr file (if there are any) and provides the
type signature when hovering over the first word of a line.
The server only supports the first word of a line because it is
missing a representation of the source code in a data structure,
which can be easily mapped to the abstract syntax tree of the
Frege compiler. These two features make the Frege language
server hardly usable because a typical language server not only
supports hover and diagnostic features but many more such as
autocompletion, refactoring, go to declaration and find usages.
Furthermore, the hover request takes a long time until it returns
the type signature.

However, the Frege language server provides a solid basis
for future work. It uses the well-maintained LSP4J library
to implement the current language server protocol 3.16.0

and possible future versions. It is well-tested, uses Github
actions as a continuous delivery pipeline and directly in-
tegrates the Frege compiler through the FregeRepl and
FregeInterpreter modules. This allows to develop the
abovementioned additional language features to make the
Frege language server not only usable in Visual Studio Code
but for every language server protocol supporting editor.

VII. CONCLUSION

Developing a language server takes a lot of effort. A deep
knowledge of the language’s compiler or interpreter is required
to build the needed language features. Hence, the language
server protocol is a welcoming addition, which helps to make
these features reusable across multiple editor clients.

In this experience report, I showed through multiple proof
of concepts how a language server using the language server
protocol can be developed iteratively. As a first step, I ported
Microsoft’s example language server to Java. Secondly, I built
a Frege Gradle plugin, which compiles Frege files to Java
allowing interoperability between Java and Frege. Lastly, I
leveraged this interoperability to develop a diagnostic and
hover feature powered by the Frege compiler, which is used
in the Frege Visual Studio Code plugin.

REFERENCES

[1] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the elipse ide?” IEEE software, vol. 23, no. 4, pp.
76–83, 2006.

[2] Microsoft, “Language server protocol,” https://microsoft.github.io/lang
uage-server-protocol/, 2016, Accessed: 03-09-2021.

[3] T. Gagnaux, “Frege lsp server,” https://github.com/tricktron/frege-lsp-s
erver, 2021, Accessed: 03-09-2021.

[4] I. Wechsung, “The frege programming language (draft),” 2014.
[5] T. Gagnaux, “Frege vscode,” https://github.com/tricktron/frege-vscode,

2021, Accessed: 03-09-2021.
[6] K. Arnold, J. Gosling, and D. Holmes, The Java programming language.

Addison Wesley Professional, 2005.
[7] StackOverflow, “2021 developer survey,” https://insights.stackoverflow.

com/survey/2021, 2021, Accessed: 28-08-2021.
[8] D. Geer, “Eclipse becomes the dominant java ide,” Computer, vol. 38,

no. 7, pp. 16–18, 2005.
[9] I. Wechsung, “fregide,” https://github.com/Frege/eclipse-plugin, 2019,

Accessed: 03-09-2021.
[10] P. Charles, R. M. Fuhrer, S. M. Sutton Jr, E. Duesterwald, and J. Vinju,

“Accelerating the creation of customized, language-specific ides in
eclipse,” ACM Sigplan Notices, vol. 44, no. 10, pp. 191–206, 2009.

[11] Karnaukhov, Kirill and Surkov, Peter and Khudyakov, Jura, “Intellij idea
plugin for frege language,” https://github.com/IntelliJ-Frege/intellij-fre
ge, 2021, Accessed: 03-09-2021.

[12] M. Madasamy, “Frege repl,” https://github.com/Frege/frege-repl, 2019,
Accessed: 03-09-2021.

[13] Microsoft, “Language server extension guide,” https://code.visualstudi
o.com/api/language-extensions/language-server-extension-guide, 2021,
Accessed: 03-09-2021.

[14] ——, “Vscode language server - node,” https://github.com/Microsoft/v
scode-languageserver-node, 2021, Accessed: 28-08-2021.

[15] T. E. Foundation, “Eclipse lsp4j,” https://github.com/eclipse/lsp4j, 2021,
Accessed: 03-09-2021.

[16] T. Gagnaux, “Lsp example with a java server and lsp4j,” https://github
.com/tricktron/vscode-extension-samples/tree/java-language-server-ex
ample/lsp-sample, 2021, Accessed: 28-08-2021.

[17] F. P. Miller, A. F. Vandome, and J. McBrewster, Apache Maven. Alpha
Press, 2010.

[18] B. Muschko, Gradle in action. Simon and Schuster, 2014.
[19] Jetbrains, “The state of developer ecosystem 2021,” https://www.jetbra

ins.com/lp/devecosystem-2021/java/, 2021, Accessed: 29-08-2021.
[20] Gradle, “The application plugin,” https://docs.gradle.org/current/user

guide/application plugin.html#sec:application tasks, 2021, Accessed:
28-08-2021.

[21] I. Wechsung, “Calling frege from java (from release 3.24 on),” https:
//github.com/Frege/frege/wiki/Calling-Frege-from-Java-(from-release-3
.24-on)#thunks-and-boxes-fregerunthunk-fregerunbox, 2016, Accessed:
03-09-2021.

[22] Gradle, “The java plugin,” https://docs.gradle.org/current/userguide/java
plugin.html#sec:java tasks, 2021, Accessed: 28-08-2021.

[23] T. Gagnaux, “Frege gradle plugin,” https://github.com/tricktron/frege-g
radle-plugin, 2021, Accessed: 28-08-2021.

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://github.com/tricktron/frege-lsp-server
https://github.com/tricktron/frege-lsp-server
https://github.com/tricktron/frege-vscode
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://github.com/Frege/eclipse-plugin
https://github.com/IntelliJ-Frege/intellij-frege
https://github.com/IntelliJ-Frege/intellij-frege
https://github.com/Frege/frege-repl
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://github.com/Microsoft/vscode-languageserver-node
https://github.com/Microsoft/vscode-languageserver-node
https://github.com/eclipse/lsp4j
https://github.com/tricktron/vscode-extension-samples/tree/java-language-server-example/lsp-sample
https://github.com/tricktron/vscode-extension-samples/tree/java-language-server-example/lsp-sample
https://github.com/tricktron/vscode-extension-samples/tree/java-language-server-example/lsp-sample
https://www.jetbrains.com/lp/devecosystem-2021/java/
https://www.jetbrains.com/lp/devecosystem-2021/java/
https://docs.gradle.org/current/userguide/application_plugin.html#sec:application_tasks
https://docs.gradle.org/current/userguide/application_plugin.html#sec:application_tasks
https://github.com/Frege/frege/wiki/Calling-Frege-from-Java-(from-release-3.24-on)#thunks-and-boxes-fregerunthunk-fregerunbox
https://github.com/Frege/frege/wiki/Calling-Frege-from-Java-(from-release-3.24-on)#thunks-and-boxes-fregerunthunk-fregerunbox
https://github.com/Frege/frege/wiki/Calling-Frege-from-Java-(from-release-3.24-on)#thunks-and-boxes-fregerunthunk-fregerunbox
https://docs.gradle.org/current/userguide/java_plugin.html#sec:java_tasks
https://docs.gradle.org/current/userguide/java_plugin.html#sec:java_tasks
https://github.com/tricktron/frege-gradle-plugin
https://github.com/tricktron/frege-gradle-plugin

7

[24] M. P. Jones, “Functional programming with overloading and higher-
order polymorphism,” in International School on Advanced Functional
Programming. Springer, 1995, pp. 97–136.

	Introduction
	Related Work
	Concept
	Language Server Protocol Boundary
	First Proof of Concept
	Second Proof of Concept

	Frege Java Interoperability Boundary
	The Frege Compiler

	Discussion
	Conclusion
	References

