
Bachelor-Thesis

Event Based
Real-Time Synchronization

of Web Applications

Robin Christen, Etienne Gobeli

March 20, 2020

Supervisors: Prof. Dierk König
Dr. Dieter Holz

Experts: François Martin
Marco Sanfratello

Profile: iCompetence

1

Abstract

Real-time synchronization has become more and more relevant due to the
increasing demands on multi-user and collaboration software with the under-
lying idea that information can be shared instantly across different clients.
Implementing this feature in a web environment brings various limitations
and challenges that need to be overcome. In this project, we aimed to solve
the problem that the application state is typically displayed in a web browser
based on one point in time by introducing possibilities that allow a server
to push messages to a client without an explicit request. This turned out
to be more challenging with the requirement for a small unit of edit, which
resulted in the need for offline capabilities to ensure fast processing. Along
the way, we have discovered how an event-driven approach can help to solve
the problem of merging several divergent but equivalent sources of informa-
tion to eventually converge to a consistent state. This thesis documents our
findings, their advantages, limitations and impacts on usability.

1

Contents

Summary 5

1 Introduction 6
1.1 Motivation . 6
1.2 Objective . 6
1.3 Problem Statement . 6
1.4 Methodology . 7
1.5 Scope . 7

I Technical Report 8

2 Web Environment 9
2.1 Client . 9
2.2 Server . 9
2.3 HTTP . 10

3 Two-way Communication 11
3.1 Short Polling . 12
3.2 Long Polling . 14
3.3 Server-Sent Events . 17
3.4 WebSockets . 20
3.5 Comparison . 23

4 State Distribution 25
4.1 Single Master . 25
4.2 Multiple Masters . 28
4.3 CAP Theorem . 29
4.4 Conclusion . 29

5 Conflict Management 30
5.1 Conflict . 30
5.2 Prevention . 30
5.3 Convergence . 31
5.4 Ordering . 32

2

6 Event-Driven 33
6.1 Event Sourcing . 33
6.2 Stream Processing . 35
6.3 Advantages . 35
6.4 Limitations . 36

7 Conflicting History 37
7.1 Resolution . 37
7.2 GUI Adjustments . 41
7.3 Projection Conflicts . 41
7.4 Impacts . 42

8 View Rendering 43
8.1 Data based . 43
8.2 Event based . 45

9 Usability 46
9.1 Coupled View . 46
9.2 Impact of Conflicts . 47
9.3 Offline Management . 48
9.4 Too Much Real-Time . 49

II Proof of Concept 50

10 Project 51
10.1 Requirements . 51
10.2 Iterations . 52

11 Architecture 53
11.1 Event . 53
11.2 Store . 53
11.3 Scheduler . 54
11.4 API . 54
11.5 DOM Projection . 55
11.6 Controller . 56
11.7 View . 56
11.8 Overview . 57

3

12 Implementation 58
12.1 End-to-End Events . 58
12.2 View Rendering . 59
12.3 Conflict Management . 60
12.4 Server . 61

13 Conclusion 62
13.1 Outlook . 63
13.2 Reflection . 65

III Appendix 66

References 67

List of Figures 68

Glossary 69

Declaration of Honesty 70

4

Summary

With the advent of multi-client and collaboration software, real-time synchro-
nization has become an important requirement. Users expect their actions to
be instantly and automatically distributed across multiple clients, and there
is already software that support this functionality. Paradoxically, however,
web applications are still lagging behind this trend.

The problem is that web browsers have traditionally been designed to be
mostly stateless with the purpose of viewing data at one point in time. They
communicate based on the request-response pattern, making it difficult to re-
ceive unrequested messages. In this thesis we explored different approaches
to provide real-time functionality for the web that can eliminate the manual
process of reloading a page. The idea was to gather knowledge by researching
various methods and applying them to realistic, practical examples.

It turns out that it is possible to bypass the limitations of receiving mes-
sages without an explicit request by using polling, streaming techniques or
by switching to the WebSocket protocol. Yet the challenge takes on a new
dimension when the goal is to provide real-time capabilities where the unit
of edit is small, such as a single keystroke instead of a complete form sub-
mission. It pushes typical architectures that maintain state on a server to its
limits, as the latency of a server round-trip can lead to a bad user experience.

To overcome these problems, the state must be managed locally on each
client instead of on a single server. This eliminates the need to validate the
changes on a central instance, providing speed advantages and even offline
support. However, this results in different copies of equally valid states, and
to eventually achieve convergence, these states must be synchronized with
each other and potential conflicts must be resolved.

In this project an event-driven approach is used to solve the problems of
real-time synchronization. Along the way, we discovered its advantages, its
limitations and the usability trade-offs that need to be considered. The re-
sults are documented in this report and the practical demonstrations are
available on GitLab1.

1https://gitlab.fhnw.ch/p6-christen-gobeli

5

https://gitlab.fhnw.ch/p6-christen-gobeli

1 Introduction

The Internet enables the connection of applications and the exchange of data
between them. As a result, software can now span across multiple systems.
This raises new challenges for developers. One of these challenges is the
synchronization between the different clients. In this thesis we discuss the
difficulties of real-time synchronization in a web environment.

1.1 Motivation

Nowadays, a significant part of the computing power and data storage is no
longer handled on personal computers, but in data centres accessible over the
Internet. This is commonly known as cloud computing, which has led to an
increase in the development of multi-client and collaboration software. Users
expect to be able to use multiple devices for the same application state and
to collaborate with other users. Therefore, sending and receiving updates
in real-time is an important requirement. One way to interact with such a
system is via a web application. These applications run in a browser, which
limits their capabilities and making it difficult to provide a live experience.

1.2 Objective

With this project we want to explore different possibilities to solve the prob-
lems described in the next chapter (1.3) for web applications. The main goal
is to acquire knowledge and to apply the accumulated knowledge in prac-
tice. This should result in a deeper understanding of the challenges, their
implications and ideas for possible solutions.

1.3 Problem Statement

A typical web application consists of a server and multiple clients. Each client
reads the state from the server and displays it in the browser. The problem is
that this only happens at one point in time. After that, the client is usually
static and only finds out about a potential change on the server after an
update has been requested. In practice, this can be achieved for example
by reloading the website. This is especially a problem when changes occur
quickly and interested clients need to be up to date immediately.

6

Receiving updates To provide a live experience, the server must send
updates to the client without the client explicitly requesting them. The
communication between the client and the server must be bidirectional, so
that both the client and the server can send and receive messages.

Consistency Every client should always display the correct information.
Possible conflicts must be resolved in such a way that in the end everyone
ends up with the same state.

1.4 Methodology

To achieve our defined goal from chapter 1.3, we approached the problem in
two steps. A technical and a practical part. These parts were not created one
after the other, but together. During the project ideas and approaches were
researched, implemented and validated. The result was documented across
the two sections, which are intended to complement each other.

1.4.1 Technical Report

Part I consists of our considerations, challenges, investigations and possible
approaches to solve the problem of real-time synchronization in web applica-
tions. This section is mainly theoretical and not bound to a specific example.
Its purpose is to form a better understanding about the topic.

1.4.2 Proof of Concept

Part II documents how we applied the knowledge in practice on an example
project. This project showcases the insights we accumulated and consists of
different technologies and approaches.

1.5 Scope

This project focuses on different approaches and the underlying ideas of real-
time synchronization. For educational reasons we did not want to use any
library or framework which already solve parts of the problem. This also
has the advantage that the stack is simple and we as developers retain full
control. Anything which is not explicitly needed in order to provide live
synchronisation is considered out of scope.

7

Part I

Technical Report

8

2 Web Environment

An application that runs in a web environment is usually built using the
client-server architecture. This makes it a distributed application in which
the parties must be able to communicate with each other.

2.1 Client

A client is the part of a web application that runs locally in a browser.
Traditionally, browsers have been mostly stateless and designed only to access
information on the World Wide Web. In recent years, it has become popular
to use JavaScript to interact with the User Interface (UI) which allows an
application to modify the view without the need of an internet connection.
This enables a web application to feel more like a desktop application and
not just a viewer of Hypertext Markup Language (HTML) files. However,
some limitations still remain. For example, the communication is mainly
synchronous, forcing a client to request changes instead of being notified.
This topic is further discussed in chapter 3.

2.2 Server

In a traditional web application, the server is often considered to be a pre-
sentation server and is responsible for maintaining an application state. It
accepts requests from clients, processes them and returns information about
the result of the request. As clients evolve to become more than just a viewer
of results, different types of data to be transmitted increased in popularity.
Instead of returning HTML files, JavaScript Object Notation (JSON) is now
a widely used format to exchange data.

9

2.3 HTTP

The Hypertext Transfer Protocol (HTTP)2 is the main communication pro-
tocol used in a web environment and it is based on the request-response pat-
tern (2.3.1). In addition to the payload, each request on a resource includes
a method3 to inform the server of the intent, and each response contains a
status code4 to inform the client about the result of the request [Gri13].

TCP/IP HTTP mainly uses the Transmission Control Protocol/Internet
Protocol (TCP/IP)5 as the underlying transport protocol which guarantees
that if the data is delivered, it is complete and in the correct order. It uses
acknowledgement messages to inform the sender about a successful transmis-
sion [Gwe18]. For this reasons, TCP brings important features when trying
to achieve consistency across multiple clients.

2.3.1 Request-Response

The request-response messaging pattern is a basic method that allows an
issuer to send a message and receive a corresponding reply. HTTP allows a
client to request something from a server and receive a response about the
result (1). For security reasons, the client must always initiate the request
and it is not possible for the server to start the HTTP connection. This
restrictions limits the possibilities to push updates to the clients without
their explicit request. However, it can be bypassed with some techniques
that are discussed in chapter 3.

Figure 1: HTTP’s request-response pattern

2https://en.wikipedia.org/wiki/Hypertext Transfer Protocol
3https://developer.mozilla.org/de/docs/Web/HTTP/Methods
4https://developer.mozilla.org/de/docs/Web/HTTP/Status
5https://en.wikipedia.org/wiki/Internet protocol suite

10

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://developer.mozilla.org/de/docs/Web/HTTP/Methods
https://developer.mozilla.org/de/docs/Web/HTTP/Status
https://en.wikipedia.org/wiki/Internet_protocol_suite

3 Two-way Communication

An important requirement to enable real-time synchronization between clients
is not just the ability to send updates but also to receive changes without an
explicit request. In chapter 2.3 was mentioned that web applications use the
HTTP protocol to communicate between client and server, which is based
on the request-response pattern.

3.0.1 Client Request

Methods for sending updates to a server using HTTP are well-known. For
example, this can be achieved by using a REST6 architecture. Since these
approaches are well-established and not part of the problem, this thesis will
not go into this topic in detail.

3.0.2 Server Push

Conversely, the server does not have the ability of pushing data directly to
the client. Different approaches exist to bypass these limitations and allow
clients to update automatically. The rest of this chapter discusses the various
options available. The following principles are going to be explored:

• HTTP Polling

• HTTP Streaming

• Beyond HTTP

Code Disclaimer The following chapters contain code examples. These
examples are by no means meant for production. They are simply ideas,
prototypes or skeletons to demonstrate the underling principles with the
goal to provide a better understanding of the explored concepts.

6https://ics.uci.edu/̃fielding/pubs/dissertation/rest arch style.htm

11

https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

3.1 Short Polling

The simplest approach is to use a technique called short polling (2). The idea
is, that the client automatically and periodically asks for updates from the
server. This basically automates the manual reloading of a website but with-
out having to re-render the entire page. Ideally, the response would be empty
unless new data is available but this requires some extra considerations.

Interval A critical part is to decide on the polling interval. Long intervals
translate to a delayed delivery of updates, whereas short intervals result in
unnecessary traffic and high overhead both for the client and the server.
(An average HTTP request adds about 850 bytes of request and response
overhead [Gri13].)

Figure 2: Sequence diagram for short polling

12

3.1.1 Example

The following code shows a skeleton of how the client could implement short
polling with an interval of one second.

const poll = async () => {

const response = await fetch('https://puerro.io/api');
// handle response

};

setInterval(poll, 1000); // repeat every second

The server can provide a typical HTTP endpoint that sends a responds and
then closes the connection.

http.createServer((req, res) => {

res.setHeader('Content-Type','text/plain');
res.end('Puerro'); // send response and close connection

}).listen();

3.1.2 Advantages

The biggest advantage of short polling is that it is easy to implement. It can
be implemented on existing API’s without the need to change anything on the
server by simply calling the endpoint periodically, even when the user has not
been interacting with the application. The server can close the connection
immediately after the response and does not need to provide any functionality
to detect changes or track outdated state of a client. If the application state
changes faster than the defined interval, it is less resource-intensive than
sending each change, because several changes can be consolidated together.

3.1.3 Disadvantages

The main disadvantage of polling is that it is not actually real-time. Updates
arrive at a client only after the next poll and not immediately. A short time
interval brings faster updates, but most requests could end up being useless
because nothing may have changed since the last poll. This is not optimal
as it uses resources without bringing any value. Finding the right interval is
difficult and often not possible without making any compromises.

13

3.2 Long Polling

The problem with short polling is that it could result in a lot of unnecessary
network traffic. Long polling (3.2) tries to solve this problem by keeping the
connection open until an update is available. The workflow is as follows:

1. The client initiates a new HTTP request.

2. The server does not respond immediately, but holds the connection
open until there is new information for the client.

3. If new data is available, the server sends it with an HTTP response
and ends the request.

4. The client immediately opens a new request and the process starts over.

Figure 3: Sequence diagram for long polling

14

3.2.1 Example

The implementation of long polling on the client side is similar to short
polling. The difference is that the request must be reopened immediately
after the previous request has finished, instead of invoking the poll based on
a time cycle.

async function poll() {

const response = await fetch('https://puerro.io/api');
// handle response

poll();

}

The server can no longer close the connection right away but must use some
kind of change detection. This could for example be achieved with the Ob-
server pattern7. Upon a request from the client, the server adds a new
subscription to an observable and only responds to the request after being
notified by the observable.

const state = Observable('Puerro'); // see observer pattern

http.createServer((req, res) => {

res.setHeader('Content-Type', 'text/plain');
// only send response and close connection after a change

state.once(state => res.end(state.toString()));

}).listen();

7https://github.com/robin-fhnw/IP5-Puerro/tree/master/src#observable

15

https://github.com/robin-fhnw/IP5-Puerro/tree/master/src#observable

3.2.2 Advantages

The advantage of long polling is that the server can choose when to respond
to the request and can therefore proactively push messages to a client as
soon as data becomes available. This eliminates the ping-pong approach
from short polling and the unnecessary network traffic that comes with it.

3.2.3 Disadvantages

A downside of long polling is that the implementation on the server part
requires some additional considerations. Care must be taken to ensure that
a client does not miss any changes in the process of reopening a connection,
as seen in figure 4. In addition, an initial state is normally expected on the
first request. Instead of using the Observer pattern, these problems can be
solved by managing revision information to make the server aware of the
current state of a client to provide any missing data.

Timeouts It also needs to be considered that a timeout can occur if no new
updates are propagated for a longer period of time. Furthermore, reopening
an HTTP request still adds additional network overhead (HTTP header).
This is especially a disadvantage if updates are sent at a fast rate.

Figure 4: Sequence diagram for lost update in long polling

16

3.3 Server-Sent Events

The server-sent events (SSE) technology was launched with HTML5. Similar
to long polling (3.2), it allows the server to proactively push data to the client.
The difference with SSE is that the HTTP connection remains open and
messages are transmitted in the form of chunks8. This makes it a streaming
approach where the client must parse the received data in order to understand
the message. Most browsers (93.17%9 as of 01/2020) provide the specified
EventSource API10 to open a connection, receive updates and distribute
the messages via DOM events. For the EventSource API to understand the
messages, a specific message convention must be used:

• Messages are separated by a double line break (\n\n)

• The id of a message is prefixed with ”id:”

• The type of a message is prefixed with ”event:”

• The payload of a message is prefixed with ”data:”

Figure 5: Sequence diagram for Server-Sent Events

8https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Transfer-Encoding
9https://caniuse.com/#feat=eventsource

10https://www.w3.org/TR/2009/WD-eventsource-20090421/

17

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Transfer-Encoding
https://caniuse.com/#feat=eventsource
https://www.w3.org/TR/2009/WD-eventsource-20090421/

3.3.1 Example

The implementation on the client is straight forward and handled by the
EventSource API. Based on the specified event type (with the "event"

prefix), DOM events are fired on the source object.

const eventSource = new EventSource('https://puerro.io/api');
eventSource.addEventListener('card_changed', event => {

// handle 'card_changed' events

});

eventSource.addEventListener('message', event => {

// handle events to which no type has been annotated

});

The server must set the the header "Content-Type" to "text/event-stream"
and write the messages according to the convention to the stream. The
last-event-id is automatically sent from the EventSource (based on the
"id" prefix) and can be used to push the appropriate message.

http.createServer((req, res) => {

res.setHeader('Content-Type', 'text/event-stream');
const lastEventId = req.headers['last-event-id'];
// use lastEventId to provide appropriate message

state.onEvent(event => {

res.write('id:' + event.id + '\n');
res.write('event:' + event.type + '\n');
res.write('data:' + JSON.stringify(event) + '\n\n');

});

}).listen();

An example of the network stream could look like this:

id: 1234

event: card_changed

data: { text: 'Puerro' }

id: 1235

event: card_changed

data: { text: 'Huerto' }

18

3.3.2 Advantages

The functionalities are similar to long polling but with the additional benefit
that the HTTP request is not being closed and reopened after every update.
This means that the network overhead is kept to a minimum and that it is
not possible to miss any updates in between. In case the network gets inter-
rupted, the EventSource API automatically tries to reconnect and sends the
last-event-id which has been received on the client. This allows the server
to easily identify the missing messages, which need to be re-transmitted. Fur-
thermore, the EventSource API fires DOM events for convenience reasons
and does not require any additional library or framework as it is built into
most browsers.

3.3.3 Disadvantages

The biggest disadvantage of SSE is the browser support. However, this can
be bypassed with polyfills11 if older browsers must be supported. It would
also be possible to parse the chunks manually to ensure the support for all
required browsers. Furthermore, when using SSE it must be considered that
dropped clients only get detected on the server after trying to send a message.
The additional functionally of detecting offline clients could be implemented
by periodically sending a heartbeat. Similar to long polling, SSE operates on
an open HTTP connection which makes it possible for the request to timeout.
Because the EventSource API automatically reconnects, this should not be
a problem for most cases. Furthermore, it must also be considered that most
browsers only allow 6 open HTTP connections per domain12.

11https://www.npmjs.com/package/event-source-polyfill
12http://blog.olamisan.com/max-parallel-http-connections-in-a-browser

19

https://www.npmjs.com/package/event-source-polyfill
http://blog.olamisan.com/max-parallel-http-connections-in-a-browser

3.4 WebSockets

WebSockets is very different compared to the previous approaches. Instead
of utilizing HTTP, it uses its own, dedicated protocol which enables bidi-
rectional streaming of text and binary data over a single TCP connection.
[Gri13]. HTTP is used only for the initial handshake to upgrade to the Web-
Socket protocol [I F11]. The client can connect to a WebSocket server via a
browser API, which is supported by most of the modern borwsers13 (almost
97% as of 01/2020). Similar to SSE, the browser’s WebSocket API takes care
of opening a connection and parsing the messages.

Figure 6: Sequence diagram for WebSockets

13https://caniuse.com/#feat=websockets

20

https://caniuse.com/#feat=websockets

3.4.1 Example

The browser API on the client is handled similarly to the SSE API. After
setting the URL to which the client should connect to, messages are received
via DOM events. In addition to receiving updates from the server, messages
can also be sent to the server using the same socket.

const socket = new WebSocket('ws://puerro.io/api');
socket.addEventListener('message', msg => {

// handle message

});

socket.send('Lorem ipsum'); // send data over the same connection

The implementation of a WebSocket server, however, is completely different
and often more complicated than the implementation of an HTTP server.
Typically, it requires the help of a framework (e.g. ws14) which handles the
connection management and provides the functionality to send and receive
messages via the socket.

const server = new WebSocket.Server(); // uses 3rd party library

server.on('connection', ws => {

ws.on('message', msg => {

// handle incoming message

});

state.on(state => ws.send(state.toString())) // send message

});

14https://www.npmjs.com/package/ws

21

https://www.npmjs.com/package/ws

3.4.2 Advantages

WebSocket has the advantage that it is bidirectional. Both the sending and
the receiving of messages can be handled via the same connection. Unlike
the other approaches, WebSockets can automatically detect dropped clients,
and the browser allows up to 1024 connections to be open in parallel instead
of just 6. In addition, the network overhead is very low, which speeds up the
data transfer.

3.4.3 Disadvantages

The biggest downside of the WebSocket protocol is that it cannot use the out
of the box features of the browser that are support when using HTTP, such as
caching or compression [Gri13]. All these additional functionalities must be
handled at the application level, which often requires the use of a dedicated
library. This additional burden makes the implementation and the developer
experience more complicated. Furthermore, some proxies and firewalls block
WebSocket connections, and it is hard to work with load balancers [Gri13].

22

3.5 Comparison

To compare the different approaches, we have implemented them using prac-
tical examples and compared their advantages and disadvantages. Based on
the gathered knowledge, we haven given each of them points from 0 to 2
across different categories.

Ease of use This category indicates how easy the implementation is from
a developer’s perspective. 0 means that it is difficult to use and 2 means that
it is easy to implement.

Support The support category compares how good the support across dif-
ferent browsers is. 0 means that support is bad whereas 2 means 100%
support.

Network overhead The overhead is about how much unnecessary network
traffic is used. 0 means that there is a lot of network overhead and 2 means
that the overhead is kept to a minimum.

Functionality Functionality is about the amount of built-in features. 0
means that there are no additional features whereas 2 means that it comes
fully equipped.

3.5.1 Result

The following table (1) shows our result including the total.

Short Polling Long Polling SSE Web Sockets

Ease of use 2 1 1 0
Support 2 2 1 1
Network overhead 0 1 2 2
Functionality 0 0 1 1
Total 4 4 5 4

Table 1: Comparison of the approaches

23

3.5.2 Recommendations

We have concluded that there is not a single best option for all use case.
The following paragraphs contain our usage recommendations for pushing
messages to a client based on the previous acquired result.

Short Polling Short polling is the easiest to implement and does not re-
quire any changes on a typical endpoint. It should be implemented when
updates arrive at a steady rate and the requirements are not real-time. In
case there are many updates, short polling can provide a simple way to ag-
gregate messages.

Long Polling Long polling is usually a better option than short polling
because it eliminates unnecessary server round-trips. It requires some addi-
tional consideration on the server, but it allows the server to push messages
to the client as new updates arrive in near real-time.

Server-Sent Events In our opinion, server-sent events is usually the best
option. It is similar to long polling but with less network overhead and
more built-in features. It automatically tries to reconnect and informs the
server about its last processed message. In case the EventSource API is not
supported, long polling can be used as a fallback.

WebSockets If message latency is important (e.g. for real-time games), a
WebSocket is probably the best option due to its speed advantages. How-
ever, the implementation is more complicated and by bypassing the HTTP
protocol, many of the browsers built-in features are no longer supported. We
think that WebSockets is an overkill for most use cases and normally not
needed.

24

4 State Distribution

In a real-time environment, every client should display the same information.
To ensure a consistent application state across multiple clients, each of them
must have the same data. As soon as something changes that is relevant for
the shared representation, it has to be communicated over the network. In
this chapter, the different approaches to distribute changes are discussed.

4.1 Single Master

One approach is to maintain a single writable copy of the state on a central
server. Each change request must be processed on the server before it can be
displayed on the clients. The server contains the business logic and therefore
has full control over the application and can enforce any integrity constraints.

4.1.1 Strong Consistency

Because the changes are applied on a single server, it can process the updates
one after another in a sequential order and keep a conflict free state. Users
must wait until previous requests have been handled or retry again at a
later time. If there are multiple changes to the same data, the last update
determines the final state.

Changing state When a client wants to update the state, it must send
a request to the server that handles the change. In a web environment, it
is common to use commands to interact with a server. For example, REST
is a possible architecture style using URIs and HTTP methods as command
endpoints. The request is normally answered by a synchronous response,
which includes information about the status and the payload required to
update the view.

4.1.2 Updating Clients

After a change, the server needs to inform the other clients about the new ap-
plication state. To provide real-time functionality, updates should be pushed
to the clients automatically without their explicit request (3). These mes-
sages are sent asynchronously because the server cannot be blocked until
every client has received and confirmed the update.

25

Cross-channel updates Having a synchronous communication for the is-
suing clients but asynchronous updates for non-issuing clients can lead to an
outdated view because the messages from different communication channels
are unaware of each other (7). This can be prevented by coordinating the
arrival of messages either by using some kind of revision information or by
using a single update channel. A single update channel would mean that the
issuer also receives its own updates through the asynchronous distribution
channel, as seen in figure 8. The synchronous response could then solely be
used to inform the user about occurred failures.

New clients In order to set up a new client, the application can query the
state form the central server and start listening for the asynchronous update
messages. Thereby, it must be considered that incoming messages between
the query response and the attachment on the asynchronous update channel
are not being dropped.

4.1.3 Performance

A disadvantage of using a central server is that the latency between the dis-
patching of an update and its visual representation on the client depends
on the network connectivity. Each update must first do a server round-trip
before it can be applied locally. Normally, this latency limitation is accept-
able if the update does not need to be reflected immediately, for example an
effect after pressing a button. It is more problematic, when the unit of edit
becomes smaller, such as a single keystroke or the position of a slider. Then
the view might update slowly, which is not very user-friendly (9).

4.1.4 Availability

Another consequence is that the client must always be online and connected
to the server so that the user can interact with the application.

Optimistic Update Instead of waiting for an acknowledgement from the
server, the performance problem could be bypassed by updating the changes
locally in an optimistic way. If the update fails unexpectedly, the changes
have to be undone on the client, which would result in a complicated conflict
and error handling because without a history of operations it is difficult to
restore an already aggregated state.

26

Figure 7: Inconsistency with central state processing

Figure 8: Consistency with central state processing

27

4.2 Multiple Masters

Another approach is to allow the clients to manipulate the state locally with-
out the restriction of a server round-trip to validate a change. This means
that the source of truth is distributed across the clients and that each client
must implement the business logic and comply with the integrity constraints.

4.2.1 Eventual Consistency

Without a central instance that coordinates updates, changes can occur si-
multaneously on different clients. This inevitably leads to a temporarily
divergent system with multiple copies of the application state. To eventually
achieve a consistent state again, an asynchronous synchronization process
must take place to update the clients. In a live environment, this process
should happen as often as possible, ideally after each change.

4.2.2 Synchronization

The synchronisation process must guarantee that eventually every client ends
up with the same state. The changes cannot simply be transmitted to the
other users, as this could lead to inconsistency and ultimately data loss if
changes were made simultaneously. The difficulty is that two diverged states
are equally valid but that in the end both need to converge to the same state.
How to mange these conflicts is discussed in chapter 5.

New clients New clients must initially receive the current state of the ap-
plication. Without a server, however, this would mean that at least one ad-
ditional client would need to be online to synchronize the state peer-to-peer.
This cannot be guaranteed in a web environment, therefore it is recommended
to also have a server that maintains the state.

4.2.3 Performance

The advantage of allowing local updates is that the updates are instantly
applied on the client without the need of a server round-trip that implies
network latency.

Offline An additional benefit of working on a local copy of the state is that
the clients do not need a permanent network connection, but can be offline.

28

4.3 CAP Theorem

The CAP theorem states that in a distributed system only two of the follow-
ing three properties can be guaranteed: Consistency, availability and parti-
tion tolerance [Dai13]. Because network interruptions cannot be prevented,
there needs to be a decision to either cancel an operation to ensure con-
sistency or proceed with the operation to provide availability [Dai13]. The
two above discussed approaches of either having a single master or multiple
masters demonstrate this conflict. It is possible to either have a consistent
system using a central server, or to apply each change immediately with
multiple masters. Both together is unfortunately not possible.

4.4 Conclusion

Having a central server to process the state changes in a serial order is well-
known, but its usage in a live environment brings the difficulty of coordi-
nating synchronous and asynchronous messages to ensure consistency. The
latency of a server round-trip might be too slow when using small units of
edit and optimistic updates can lead to a complicated conflict and error han-
dling. Furthermore, it requires the client to be constantly online in order to
interact with the application.

On the other hand, having the source of truth distributed across the clients
solves the performance and availability issues because the changes do not
require a server round-trip to be validated. Having the business logic lo-
cally even has the benefit that the application can be used offline. However,
the state can be temporally inconsistent and a synchronization process and
possibly conflict resolution is needed to eventually achieve a consistent state
again.

29

5 Conflict Management

Multiple equally valid states can emerge by allowing the clients to indepen-
dently modify the application state locally. Eventually, they must converge
back together to guarantee a consistent application state. This chapter dis-
cusses how conflicts can be resolved.

5.1 Conflict

A conflict occurs when non commutative changes happen concurrently on
somehow related data [Kle17]. In a distributed system with several masters
that can modify the application state, different types of conflicts can arise:

• Independent users change the same data concurrently

• A user updates data that was simultaneously removed by another user

• Independent changes that together violate an integrity constraint

5.1.1 Detecting conflicts

To detect a conflict, concurrency must be detected. Operations are concur-
rent when they are unaware of each other and thus it is impossible to tell
which happened first. This can for example be determined with the use of
version numbers [Kle17].

Commutative operations Not all concurrent updates on the same data
will cause a conflict. Whenever the final outcome does not depend on process-
ing the updates in a certain order, both can and should be applied to avoid
losing information. For example, incrementing a counter is a commutative
operation.

5.2 Prevention

The best strategy is to avoid conflicts whenever possible. This can be
achieved by informing other users about the start and end of an editing
process. Chapter 9 discusses how locking and visual hints can help to sup-
port preventing conflicts and what it means for the user. These approaches
can help to reduce the number of conflicts but it is often not possible to
eliminate them completely.

30

5.3 Convergence

When a conflict could not be prevented, it must be resolved in a way that the
system eventually converges. This means that all clients must reach the same
final state when all changes have been synchronized [Kle17]. Unfortunately,
if the updates are not commutative, it is not possible to simply apply them
in the order in which they are received, as this could lead to an inconsistent
state.

5.3.1 Merge

The best case scenario would be to somehow merge the changes while trying
not to lose any information. This is a challenging and often domain specific
task for two equally valid states.

Automatically Merging concurrent operations automatically is a highly
studied field. The following algorithms exist but only work on a defined set
of data structures:

• Conflict-free replicated data type 15

• Operational Transformation 16

• Mergable persistent data structures 17

Manually Sometimes the method of merging depends on the application
and cannot be generalized. This requires each individual application to write
custom conflict resolution code, which might be error-prone. Usually this is
done by allowing the end user to select the correct state based on the use
case.

15https://arxiv.org/pdf/1608.03960.pdf
16Operational Transformation in Real-Time Group Editors
17http://gazagnaire.org/pub/FGM15.pdf

31

https://arxiv.org/pdf/1608.03960.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.933&rep=rep1&type=pdf
http://gazagnaire.org/pub/FGM15.pdf

5.3.2 Choose one

Another possibility is to simply choose one of the concurrent operations and
delete the others. However, this means that some information might get lost.
This can be disadvantageous, especially with regards to usability (9), because
the individual changes have already been successfully applied on the clients
and are now silently discarded. Different strategies exist for choosing one
operation over another. The choice can be arbitrary but must be the same
on each client to guarantee consistency. Typically, a strategy called last wins
or first wins is used. But this requires some kind of ordering in simultaneous
operations.

5.4 Ordering

When dealing with concurrency, order is an important aspect. A lack of order
can lead to a conflict that can only be solved by bringing them back into some
kind of order again because it is important to have the same preconditions
to solve a conflict deterministically on each independent client.

5.4.1 Total ordering

Having a total order means that any two changes can be compared with
each other. This can be achieved, for example, by having a single server
through which every change must go. This server forces an order on originally
concurrent updates which can then be used to resolve the conflict. However,
a central server introduces a single point of failure and possible performance
problems.

5.4.2 Consensus

Without a central authority that can guarantee a total order, the clients must
find another way to define an order to reach a consensus. This can be any
kind of arbitrary but deterministic order.

Unique Id One possibility is to assign a unique id to each change or to
each client and order the concurrent changes by this key. The id could be a
random Universally Unique Identifier (UUID) or a timestamp (but be aware
of problems with synchronizing clocks [GL12]).

32

6 Event-Driven

In the previous chapters, the focus was mainly on a data-driven approach
where the source of truth was in form of a state. This chapter introduces a
new way of thinking about state by discussing how an event-driven approach
can be used in a web environment.

6.1 Event Sourcing

The idea behind event sourcing is that the source of truth is a log of events
instead of a state object. User actions are not directly applied to a state but
stored as an immutable event in a history.

6.1.1 Commands and Events

It is important to distinguish a command from an event in order to work
with a log-based programming model.

Command A command is an imperative operation with the intend to
change something. Therefore, the issuer must know where to place the com-
mand and wait for a response to know the result of his inquiry, since the
command may also fail. The communication between the issuer and the
receiver is generally synchronous and thus coupled. A common example is
the REST architecture which uses the request-response pattern to command
changes.

Event An event, on the other hand, is simply an immutable fact of some-
thing that happened in the past. It cannot fail but only be reacted upon after
consuming it. The event producer is decoupled from the consumer allowing
a one-way and asynchronous data flow. For example, the browser’s DOM
utilizes events to inform the JavaScript about what happened on the user
interface.

Interaction An event implies that something happened in the first place.
This could for example be something non-negotiable like a change in the stock
market. However, in a web application it is usually based on a user action
which needs to be validated. Such a request normally starts as a command
that becomes an immutable event after its acceptance.

33

6.1.2 Publish-Subscribe

Transferring events from an issuer to a receiver requires an asynchronous
messaging pattern as opposed to the synchronous request-response approach.
The public-subscribe pattern can be used to broadcast events from one pro-
ducer to many consumers. Events are categorized into topics allowing con-
sumers to choose which types of messages they want to receive [Kle16]. In a
web environment, the consumer is typically a client that runs in a browser.

6.1.3 Event Broker

Although producers could send messages directly to consumers18, using a
centralized event broker to implement the publish-subscribe pattern has the
advantage that the system can better tolerate clients which are currently not
available. Producers can publish events to the broker, while consumers can
receive the events by subscribing to the broker.

Log Storage A central broker is a good place to store events because every
message passes through it. Instead of storing a state, the broker only needs
to save the messages in a log, which is an append-only operation. Therefore
it is possible to simply use an in-memory array or a file in which each line
represents an event.

Offset Storing a history of events in the form of a log has the advantage
that unavailable or completely new consumers can catch up to the latest
state without loosing any messages. This works by maintaining some kind of
offset value that can identify the last successfully processed message [Kle16].

18http://zguide.zeromq.org/

34

http://zguide.zeromq.org/

6.2 Stream Processing

A stream processor is a consumer of events that uses the incoming messages
to do something with the received data. Every message is processed as it
arrives, instead of grouping multiple events together into batches. Sometimes
a stream processor creates new events, but eventually the idea is to generate
an output [Kle16].

Stream A stream is just a chronologically ordered sequence of events. Con-
suming one event after another over time results in streaming the events.

6.2.1 Deriving State

An application must ultimately display the current state and not an event
history. Therefore, a common use case for a stream processor is to derive the
current state based on the history of events.

6.3 Advantages

The technique of taking a step back and having a new abstraction level in
form of raw and immutable events instead of an aggregated state brings some
advantages.

6.3.1 Reproducability

Having immutable events means that additional information is available to
deterministically reproduce what has happened in the application.

Auditing A log of changes can be beneficial when trying to understand
how a specific problem occurred. Errors can easily be audited and retraced.

Projections Multiple representations can be derived from the same log.
This can be useful when multiple views are required based on the same data.
It can also be helpful to provide new features at a later stage of development.

Recovery Another advantage is that it can be used for undo/redo func-
tionality. This is especially helpful for restoring an application state after an
unwanted change.

35

6.4 Limitations

Storing the source of truth as a log of changes also comes with some limita-
tions.

6.4.1 Disk Space

An append-only log can eventually take up too much disk space, and the
larger the history is, the more time it takes to process the messages. Several
options exist to truncate and optimize a log.

Snapshots An instance could be responsible for periodically or continu-
ously taking a snapshot in the form of an aggregated state including the last
processed offset [Kle17]. New clients could initialize based on this snapshot,
and the system could discard all events older than the snapshot. With this
approach, it must be ensured that clients who could not catch up with the
messages do not miss any changes. (e.g. by keeping the events until all
consumers acknowledged the delivery of the message.)

Log Compaction Another option would be to only keep the relevant mes-
sages that are used to derive the correct state. This can be a background
process that removes all unnecessary events. However, using this technique
at an application level would require a complex algorithm.

6.4.2 Querying

Querying a history of events is usually more complicated and time consuming
than querying an already aggregated state because it is not in the optimal
format for reading.

CQRS This problem can be solved when splitting the write part from
the read part as suggested in the CQRS (Command Query Responsibility
Segregation) pattern19. The idea behind it is that stored data is often not
optimized for reading. In an event-driven approach this would mean that
instead of querying the log of events, a projection is derived from the history.
A stream processor could for example write an aggregated state to a database
which can be queried with a familiar query language.

19https://cqrs.nu/

36

https://cqrs.nu/

7 Conflicting History

Conflicts must be managed differently if an event log is used as the source of
truth instead of the current state. As seen in chapter 5, a conflict can occur
when changes happen concurrently. In the case of an event history, a conflict
arises when the total order of the events is unknown. This can be detected
when multiple events point to the same previous event.

7.1 Resolution

An event is immutable and should therefore not be changed or deleted. This
means that in order to resolve a conflict, events cannot be merged together
and it is not possible to choose one and discard the other. Therefore, the only
sensible way to resolve a log conflict is by keeping every event but putting
them in a total order (5.4.1).

7.1.1 Merging Streams

Merging multiple streams means that some events need to be inserted in the
middle of a log and not just appended. As a consequence, the ordering of
the events can change over time.

Example Figure 9 shows an example with the initial situation and the
desired end goal after merging the two streams.

1. Client 1 and Client 2 already have the event A in their local history

2. Client 1 adds event B and Client 2 adds event C concurrently

3. The diverged streams must by synchronized and both have to commu-
nicate their changes to the other client

4. Client 1 appends event C to its local history

5. Client 2 inserts event B after event A in its local history

In this example, Client 1 could append the remote event and Client 2 had to
insert the received event in between. However, the other way around would
have been equally valid. The clients must reach a consensus and decide which
event should be given priority (5.4.2).

37

7.1.2 Server Priority

Reaching a consensus is important to make sure that each client ends up
with the same event history. This can be achieved by using a central server
through which every event passes. This server can force a total order on the
history based on when the event is received. This means that the server only
appends the messages to its event log and the clients always prioritize the
order received from the server over the local order.

Example The example in the figure 10 demonstrates how a consensus is
being achieved by forcing a total order on initially concurrent events with
the help of a central server.

1. Everyone starts with the event A in their local history

2. Client 1 appends event B, Client 2 appends event D and the server
appends event C concurrently to their history

3. The diverged streams must by synchronized and all communicate their
changes via the server

4. The server sends event C. Both clients insert the event after event A

5. Client 1 sends event B to the server which appends the event

6. The server sends event B. Both clients insert the event after event C

7. Client 2 sends event D to the server which appends the event

8. The server sends event D. Both clients insert the event after event B

In this example, every received event has an order priority over the local
events. It does not matter which client receives an event first. The order is
determined solely by which event is received first on the server.

Deduplication Every event is normally received by every client. The is-
suing client usually already has the event in its history. Therefore, it must
be ensured that already inserted events are not inserted twice. The server
must send the event to the issuing client as well, because the client may have
reloaded the page and lost the event.

38

Figure 9: Merging streams

39

Figure 10: Merging streams with server

40

7.2 GUI Adjustments

As discussed in a later chapter (8.2), a view is an aggregated projection de-
rived from the event history and every appended event is directly reflected in
the projection. Whenever an event is not appended but inserted in between,
the Graphical User Interface (GUI) must be restored and reconstructed to
reflect the additional fact.

7.2.1 Impossible History

Merging multiple event streams could result in an impossible history. For
example, the history could indicate that a field was edited after it has been
deleted or that an integrity constraint was violated. The view processor of
the application must be able to handle such errors from the history.

7.3 Projection Conflicts

The newly generated projection overwrites the local view, but these two
aggregated states could be conflicting. In most cases, the insertion of an
event in the middle of the history does not lead to a conflict because it
is a small, self-contained and independent unit which can often be merged
without loosing any local changes. However, there are some scenarios where
the two projections conflict witch each other. As discussed in chapter 5, these
are the following:

• Edits on the same field

• Updating data which was simultaneously being removed

• Violating integrity constraints

7.3.1 Resolution

The preconditions for resolving these conflicts deterministically are already
given by the total order of events. It depends on the implementation of the
stream processor how these conflicts are handled.

Choosing A stream processor can reliably decide which events to apply to
the user interface and which to ignore. A custom logic could be implemented
to decide on the relevant events.

41

Merging To merge concurrent events for the derived view, revision infor-
mation would have to be included in the events. The stream processor could
use this to detect concurrency and apply the desired algorithm.

Manually It is often not possible to manually let a user resolve a conflict
because the order of the events is given by the server and cannot be changed.
The only one way to arrive at a desired state is by dispatching new events.

7.4 Impacts

A stream processor can implement any kind of logic to derive the view.
However, the sequential processing and validation of events typically leads
to the following effects on the conflicts described in the previous chapter.

7.4.1 Last Wins

Changes on the same field are simply overwritten by the next event and the
last event determines the final value of the field.

7.4.2 First Wins

A violation of an integrity constraints is checked in the stream processor for
each incoming event. Events are accepted and processed as long as they are
valid. Subsequent events that violate the constraints are ignored.

7.4.3 Remove over Edit

If the order implies that something was first edited and then remove, the
data will understandably be discarded. However, if the history indicates
that something was first deleted and then edited, the stream processor first
deletes the data and then tries to apply the edit. As it is not possible to edit
an already removed item the edit cannot be applied. This results in always
favoring a delete operation over an edit operation.

42

8 View Rendering

Previously, the focus was mainly on data management and the resolution
of potential conflicts. This chapter explores how real-time applications can
display a human readable view based on the source of information.

8.1 Data based

Many dynamic web applications operate on a state which is represented by
a JavaScript object. Depending on the framework or approach, this state is
specific to one component within an application or shared throughout the
web page. With frameworks like React20, components are re-rendered as
soon as the underlying state changes. Figure 11 shows a typical state-based
render cycle.

Figure 11: State-based render cycle

20https://reactjs.org/

43

https://reactjs.org/

8.1.1 Virtual DOM

In an abstract sense, the UI is always a function of the current state (which is
held in a presentation model). With each change, the UI is rendered (based
on a render function) to the Document Object Model (DOM). A lot of mod-
ern frontend frameworks add an additional step before rendering the state to
the DOM. This step is called ”virtual Document Object Model (vDOM)”.
The vDOM can be understood as a virtual copy of the DOM which can be
updated in a more effective way than the DOM itself [Ade18].

Only after changing the vDOM the state is rendered to the actual DOM.
This can be done by overwriting the entire UI at the root element or by
diffing the current DOM to the new vDOM and patching the UI according
to the changes. In our IP5 project Puerro21 we dove deeper into how state
based rendering works.

8.1.2 Live Updates

In the case of live synchronization, new state is not only generated by user
interaction, but also by updates from the server. This data-based approach
works best with the single master state distribution used in chapter 4.

8.1.3 Re-Rendering

A possible outcome of an updated presentation model is a refresh of the entire
view on each client, which is not ideal in a multi-client application because
the temporary state will be overwritten. Temporary state is everything that
is not (yet) transmitted to other clients, such as an input text which is only
sent after a button is pressed or identity information like the focus on an
element. The refresh can also be visually noticeable for example in pictures.
As mentioned before, a possible workaround is to use a diffing algorithm
that only re-renders the changed elements. Most of the modern front-end
frameworks have one built in.

21https://github.com/robin-fhnw/IP5-Puerro

44

https://github.com/robin-fhnw/IP5-Puerro

8.2 Event based

Rendering based on a stream of events is a different approach to construct
a view. As introduced in chapter 6, this can be achieved with a stream
processor.

8.2.1 Derived

This works by applying each event after the other as an instruction to create
the view. Instead of managing the state as an object and binding it to the
actual DOM, each event is directly applied to the DOM upon arrival. For
example, if a new element is to be added to a table, the table is not re-
rendered, but a new element is simply added by the corresponding handler.
If a user changes something in the UI, the changes are transmitted as events
as well. In contrast to state based rendering, the view is not a function of
the state, but rather the UI is the state.

8.2.2 Initial View

By manipulating the DOM through events, it is difficult to render an initial
view when a user opens up the application. This can be handled, by storing
the events and sending all in order as soon as a new client connects.

8.2.3 Memory Leaks

Because event listeners are involved at a low level of the application, memory
leaks can become a problem. In the example of a table, imagine that each
row contains multiple event listeners attached to the central event store to
update the cells of the row if something changes. If the row is deleted, those
event listeners have to be removed as well. This is made even worse if the
initial view is loaded by applying all events: Rows are added and removed
and the event listeners are still dangling. One way to combat this is to use
central event handlers which patch the DOM based on attributes on the
HTML elements. We further discuss this technique in chapter 12.2.

45

9 Usability

Live synchronization brings a lot of interesting problems from the perspective
of usability. In this chapter, the goal is to lay out some of those challenges and
discuss possible approaches to manage them. The focus is not on creating a
good-looking user interface, but rather examining the impacts of live updates
from a practical perspective.

9.1 Coupled View

A main problem occurs because the view output is at the same time the input
for changes. As a result, the display and edit modes are often connected
with each other. In non-live environments, this has not been a problem
because the view represented one point in time and was not dependent on
any external changes. The user was able to make changes in isolation and
communicate them once completed. In a live environment, however, changes
are automatically pushed to the client, which can lead to usability issues.

9.1.1 Asynchronous Message Processing

With the arrival of a new message, the client usually has to adjust the lo-
cal view based on the information received. In most cases, this causes some
parts of the page to be re-rendered (8.1.3) or otherwise updated. This can
be unpleasant if the user concurrently tries to update the same data that is
changed by the received message. In this case it depends on the implemen-
tation on how this situation is dealt with.

Cancel One approach is to cancel the local edit mode when a new message
arrives. Thereby, temporary changes which have not yet been communicated
to the data source are deleted which can be irritating for the user.

Apply Another possibility is to silently apply the changes, but letting the
user continue to edit. This can lead to confusion or an unintentional over-
writing, as the user may not notice that the data has already been changed.
This could be improved by visualizing the change.

Postpone It could also be an option to detect the local edit mode and wait
for the user to finish its changes before applying the newly received data.

46

9.2 Impact of Conflicts

As discussed in chapter 5, applying state locally without a server validation
can lead to unavoidable conflicts. Chapter 5 focuses on resolving conflicts
from a technical perspective. This chapter discusses some of its considera-
tions from a usability point of view.

9.2.1 Prevention

Its always a good approach, to prevent conflicts from happening in the first
place. From a usability perspective, this can be supported trough the follow-
ing techniques.

Lock One option is to lock elements that are currently being edited by
another user. This can prevent unwanted overwrites, but restricts the possi-
bilities for users to collaborate on the same data.

Display Another option is to visually communicate to the users about
the elements that are currently being edited. This might stop users from
interfering with the same data, but still provides the option for collaboration.

9.2.2 Deciding on Correctness

Ideally, concurrent changes could always be merged together without loosing
any information. However, this is not always possible and sometimes it has
to be decided on one change over another.

Manually A typical approach is to allow users to manually resolve the
conflict by letting them decide on the correct information. This can be done
by displaying the conflict and providing the functionality to decide on the
preferred result. It is comparable to the approach that Git22 uses to merge
unsolvable conflicts. Such a functionality is complex to implement and a
time-consuming process for a user if conflicts occur frequently. The concept
could also be confusing for users that are not tech savvy or familiar with
the concept of merging. It must also be considered that messages arrive
asynchronously and that it might be too late to ask the user for help because
new messages may have already arrived on the client.

22https://git-scm.com/

47

https://git-scm.com/

Automatically Another approach is to let the application decide on the
final outcome of a conflict as discussed in chapter 5. This leads to some
information being lost, which can be fatal and frustrating for users, depending
on the use case. With this approach, it may be advisable to inform the users
about the discard information instead of silently overruling changes.

9.3 Offline Management

It is possible for a user to go offline temporarily or for a longer period of time.
This could be caused, for example, by an interruption in the connection due
to a railroad tunnel. The interruption could lead to an unusable application
when a server is required to validate each change, as discussed in chapter 4.
However, when the data is applied locally without the need for a server round-
trip, the application can continue to work offline. This chapter discusses
considerations that should be taken if offline editing is possible.

9.3.1 User Alert

Users should be informed about their offline state trough an appropriate
warning. Since offline editing is predestined for conflicts, it is also possible
to spread awareness that changes could be lost depending on how conflicts
are managed.

9.3.2 Disallow Critical Changes

Instead of allowing all changes locally, it can be considered to disallow certain
changes. For example, all non commutative changes (e.g. removing elements)
could be prevented to protect the users from losing information at a later
point. Another possibility is to prevent integrity constraints validations.

9.3.3 Rollbacks

After being offline for a longer period of time, the local information may
differ significantly from the other clients. When the user is back online, the
information is synchronized and it must be considered that the asynchronous
messages (9.1.1) could severely manipulate the local view. This could result
in many of the local changes being rolled back, causing some information to
be lost. In such a case, it may be a good idea to save the undone changes or
apologize to the user for the lost information.

48

9.3.4 Access Handling

In an offline system, a server is not available to intervene with changes. This
can be a problem, for example if changes have to be rejected for security rea-
sons or integrity constraints. Every client can modify its local state directly
and changes can only be validated at a later point.

9.4 Too Much Real-Time

Real-time updates are indeed a useful feature when used properly. Without
them, pages would need to be reloaded frequently and manually in order to
allow collaboration, which does not result in a great user experience. But it
is not easy to find the right amount of live updates without overwhelming the
users with changes that were not made by themselves. As motion attracts
attention, too many changes can overload and distract a user. Therefore, we
recommend to only use live updates where the user will benefit from them.
For example, displaying when an item is removed from a list. On the other
hand, dragging an item and displaying the exact position to other users might
be too much, especially if multiple users are using the application.

The amount of live updates is very context specific and depends on the
use case of the application. In a collaborative text editor, for example, it is
important that even small changes are updated live. While for most business
applications, real-time updates only make sense in parts of the user interface.

9.4.1 Throttle and Debounce

Throttling and debouncing are techniques which can be used to prevent too
many updates from being sent.

Throttling Throttling allows the user to only send one update in a given
time frame (e.g. every 100 milliseconds). If applied to the previous drag ex-
ample, the position of the element would only change every 100 milliseconds
and not immediately.

Debounce On the other hand, debouncing waits until the user does not
change anything for a given time. If the element drag was debounced, the
update would not be sent until the drag position is static for a specified time.

49

Part II

Proof of Concept

50

10 Project

In order to apply our knowledge from part I in a practical use case, we
implemented an example project alongside the research process to test the
theoretical findings and assumptions in a realistic scenario. We decided to
implement a collaborative kanban board. We used this example because it
is simple, but covers most of the challenges of real-time synchronization. A
kanban board is used to plan and visualize tasks for any project. The board
is divided into different columns, each representing a different stage that a
work package goes through. This use case really benefits from live updates
because users don’t have to reload the page when something within the board
changes, allowing collaborative planning.

Figure 12: Kanban board mockup

10.1 Requirements

To showcase the techniques and patterns explored we wanted to implement
the following common requirements for a kanban board:

• Add and remove a card or a column.

• Change a card or the title of a column.

• Move a card from one column to another.

51

10.2 Iterations

The kanban board was developed through the following three iterations. The
code of the project can be found on the FHNW GitLab23 instance.

10.2.1 1st Iteration

The first iteration of the board is a Minimum Viable Product (MVP) which
was used to experiment with the different approaches to push messages to the
clients. The focus of this board is to incorporate the different possibilities and
to let the user decide on how the data should be exchanged (short polling,
long polling, SSE or WebSockets). This iteration uses a data-based (8.1)
approach to communicate and consume changes. The source for this project
can be found in the ”Laboratory”24 repository on Gitlab. It formed the
decision to continue with server-sent events as the way to push data to the
clients.

10.2.2 2nd Iteration

In the second iteration, we focused on the server-sent event technology, but
implemented it with an event-driven approach. The view in this iteration is
based on streams and components (12.2). The source of the second itera-
tion can be found within the ”Proof of Concept” repository25 on the branch
iteration-2.

10.2.3 3rd Iteration

The focus of the last iteration was in optimizing the view layer. Especially in
its ability to handle conflicts. The rest of part II will focus mainly on this final
outcome of the kanban board where we will dive deeper into the architecture
and implementation of the application. The final implementation of the
project can be found in the same repository as iteration two, but on the
master branch. The final version of the application is deployed and accessible
online26.

23https://gitlab.fhnw.ch/p6-christen-gobeli
24https://gitlab.fhnw.ch/p6-christen-gobeli/lab
25https://gitlab.fhnw.ch/p6-christen-gobeli/PoC
26https://ip6-frontend-pitc-fringebenefit-eg.ocp.puzzle.ch/

52

https://gitlab.fhnw.ch/p6-christen-gobeli
https://gitlab.fhnw.ch/p6-christen-gobeli/lab
https://gitlab.fhnw.ch/p6-christen-gobeli/PoC
https://ip6-frontend-pitc-fringebenefit-eg.ocp.puzzle.ch/

11 Architecture

This chapter describes the architecture and the abstractions used to imple-
ment the proof of concept. The following sections contain JSDoc27 extracts
to illustrate the corresponding interfaces.

11.1 Event

An event is a self-contained object that expresses a user action of something
that happened in the past. It is considered immutable and contains a payload
as well as additional metadata. An event object is defined by the following
properties:

/**

* @typedef {Object} Event

* @property {String} id unique id for each event

* @property {String} type type/topic of an event

* @property {String} userId issuer of the event

* @property {Object} payload contained data

*/

11.2 Store

The store contains a history/log of events by using an in-memory array and
allows to append to the log or to insert an event in between. It is important
that the insert operation is only used on the client side and never on the
server side (7.1.2).

lastEventId The order of the events is given by the lastEventId attribute
which is managed by the store. It belongs to an event but is not immutable
because it needs to change when an event is inserted in between the log.

27https://jsdoc.app/

53

https://jsdoc.app/

11.2.1 Stream

Based on the publish-/subscribe-pattern (6.1.2), the store allows to listen
for changes by providing stream subscriptions. The implementation of the
stream is inspired by rxjs28 observables [Osm12]. The idea is to let the
consumers filter the stream to decide which events they want to see. This is
achieved by allowing a consumer to chain the filtering methods for a given
stream. The API for a stream looks as follows:

/**

* @typedef {Object} Stream

* @property {function(function): Stream} map

* @property {function(function): Stream} filter

* @property {function(function): Stream} skipUntilAfter

* @property {function(function): function} subscribe

*/

11.3 Scheduler

The scheduler was inspired by the FHNW module Web Programming 29

and allows to order actions by chaining them into a queue. This ensures that
an action is only started when the previous action has been completed. This
is especially useful if different asynchronous actions would be running at the
same time.

11.4 API

The application contains a central API module, which communicates with
the server. It sends and receives events over the HTTP protocol. It utilizes
server-sent events (3.3) to push messages to a client.

28https://github.com/ReactiveX/rxjs
29https://www.fhnw.ch/de/studium/module/9248673

54

https://github.com/ReactiveX/rxjs
https://www.fhnw.ch/de/studium/module/9248673

11.5 DOM Projection

The DOM projection abstracts the DOM handling. In addition to direct
DOM manipulation, this abstraction records each operation and makes it
possible to reverse the changes at a later time. Having a revertible DOM is
important to resolve history conflicts (7).

11.5.1 Operation

An operation contains the code to execute a DOM manipulation and the
corresponding inverse to undo the modification. The following operations
were implemented for the kanban board application (this is just a baseline,
which can be extended as needed):

/**

* @typedef {Object} DomProjection

* @property {DomAppendOperation} append

* @property {DomPrependOperation} prepend

* @property {DomInsertBeforeOperation} insertBefore

* @property {DomRemoveChildOperation} removeChild

* @property {DomRemoveOperation} remove

* @property {DomSetAttributeOperation} setAttribute

* @property {DomRemoveAttributeOperation} removeAttribute

* @property {DomSetTextContentOperation} setTextContent

* @property {DomSetValueOperation} setValue

*/

11.5.2 Checkpoint

In between the operations, checkpoints are added after each event to know
which operations the reverse function must call to revert an event. This
allows handlers to have multiple manipulations per event and provides the
functionality to travel backwards on an event level.

55

11.6 Controller

The controller is the central point of the kanban web application. It is
where the store, the DOM projection and the API connection is managed.
Each event has to go through this central instance. Events published by the
client pass through the controller to be distributed within the application and
then sent via the API. Furthermore, the controller decides what to do with
an incoming event. It checks whether the event already exists or whether it
must be inserted somewhere in the history. To prevent multiple instances of
the controller, it is implemented using the singleton pattern [Osm12].

11.7 View

In this project, two different approaches were implemented to represent the
view (12.2). The following sections contain the concepts for deriving a view
from an event log. These concepts will be used later in the implementation.

11.7.1 Event Handler

An event handler manipulates the DOM based on the information received.
The corresponding handlers are executed when a event is published in the
application. They can use the projector functions for display purposes and
provide the desired parameters.

11.7.2 UI Projector

A UI projector is a function that creates a HTMLElement based on a set of
input parameters. It can attach itself to DOM events and dispatch events
based on user actions. It returns the projected DOM element in order to be
attached to the view. However, it does not handle incoming events directly
and is therefore mainly responsible for the look and feel.

11.7.3 Component

A component is simply the combination of the look and feel of a projection
with the actions of an event handler. In this project we used this idea of a
component in 2 different ways, which are explained further in chapter (12.2).

56

11.8 Overview

The following diagram (13) shows the architectural design of the earlier dis-
cussed modules and how they are connected with each other. The specific
implementation details are described in the next chapter (12).

Figure 13: Structure of the architecture

57

12 Implementation

This chapter describes the key design decisions taken for the example project.

12.1 End-to-End Events

Events are the type of information that is communicated over the network.
They are emitted on the clients and eventually sent to the server. A current
state is not being aggregated on the server, but the events are forwarded
directly to the clients, where they are processed to construct the view. Every
event is distributed to every client, including the issuer.

12.1.1 Offline First

To enable a fast processing with a small unit of edit, despite network com-
plications, we decided to implement an offline first approach. This allows a
client to directly apply the operations (4.2) instead of waiting for a validation
from the server. This means that events are processed locally before they are
being sent to the server. Using event sourcing (6.1), every client has a local
copy of the event log (11.2).

12.1.2 Sending Events

Events are sent trough a single POST endpoint provided by the server. The
server maintains the events with an append-only operation and broadcasts
them to all clients.

Queue The scheduler (11.3) is used to send the events one after another.
If the server cannot keep up with the incoming messages (e.g. due to network
complications), they are not lost, but are queued up on the client. Sending
will only continue when the server can receive events again.

12.1.3 Receiving Events

To allow for two-way communication, we decided to use server-sent events
(3.3) to push messages to the client. The sending and the receiving chan-
nel are independent simplex channels but together they are one full duplex
channel.

58

12.2 View Rendering

The view is derived from the local history of events and forms the current
state of the application in the DOM. No separate state object is being main-
tained alongside the view. Two different approaches for view rendering have
been implemented.

12.2.1 Streaming Components

For the first approach (iteration 2), the view uses components as stream pro-
cessors. Thereby, each component directly uses the stream of events provided
by the store in the desired way. Every component has access to the log and
can independently manipulate the view based on the events.

Unsubscribe A problem with this approach is that a stream must be un-
subscribed when the component is removed to prevent memory leaks. For
example, a card component must remove its own subscriptions if it is deleted.
This was being generalized in a Component function amongst other recurring
functionalities. The details can be found on GitLab30.

Irreversible Since the component directly manipulates the DOM on in-
coming events, it is impossible to go back in time to resolve a conflict. The
entire view has to be rerendered from the beginning of the event log. This
leads to a bad performance as the event history grows.

12.2.2 Event Handlers

For the second approach (iteration 3), the logic of the event handling is sepa-
rated from the representation. Each event handler is registered at application
level and called when a corresponding event is emitted via the controller. A
handler manipulates the DOM based on the event payload and can use a
projector function for displaying purposes.

IDs Because the handlers work at application level, they must identify the
relevant elements in the DOM. This is achieved by utilizing IDs to find the
correct references.

30https://gitlab.fhnw.ch/p6-christen-gobeli/PoC

59

https://gitlab.fhnw.ch/p6-christen-gobeli/PoC

12.3 Conflict Management

As soon as a user performs any change, the local event history is different from
the other clients. These divergent copies of event streams are synchronized
as soon as possible to eventually guarantee a consistent application state (7).

12.3.1 Prevention

An attempt is made to avoid conflicts by notifying the users about simul-
taneous edits on a specific element. This should prevent that several users
unknowingly change the same data. Two approaches are being utilized.

Lock If a card is dragged, a lock is used to prevent other users from up-
dating the card while it is being dragged.

Display To inform users that someone else is editing a text, the input

component displays all users who are currently editing the text.

12.3.2 Replaying

When a conflict occurs in the history of events, it is automatically resolved
by restoring the DOM to the pre-conflicting event and then replying the op-
erations in the correct order. This is achieved by using the DOM projection

abstraction (11.5).

12.3.3 Error Handling

As discussed in chapter 9, it is important to inform the user about any
possible problems or inconsistencies. Therefore, the application informs the
user about the connection status and also when the view is being replayed
due to a conflict in the history of events.

Log For demonstration purposes, the event log is displayed in the view.
This also helps to understand the changes made in the application.

60

12.4 Server

The final implementation of the server is a simple Node.js31 HTTP server. Its
purpose is to receive events and to broadcast them to all connected clients.
It uses the last-event-id of the SSE (3.3) specification to only send the
messages that were not yet being processed by a client. Incoming events are
also persisted in a file to ensure that no events are lost after restarting the
server.

12.4.1 Id Management

Because resources are not created on the server, id management cannot be
handled centrally. With this restriction we had to find a way to generate
Ids on the client. For this sample project, we implemented an id-generation
function that uses the browser’s Math.random API to generate a 10 character
alphanumeric string. For our demo purposes this id is random enough. How-
ever, we don’t recommend using this function in a productive environment,
as it uses a pseudo-random number generator, which is not truly random.32

A better solution would be to use a UUID33.

31https://nodejs.org/
32https://hackernoon.com/how-does-js-math-random-generate-random-numbers
33https://de.wikipedia.org/wiki/Universally Unique Identifier

61

https://nodejs.org/
https://hackernoon.com/how-does-javascripts-math-random-generate-random-numbers-ef0de6a20131
https://de.wikipedia.org/wiki/Universally_Unique_Identifier

13 Conclusion

In our opinion, real-time capabilities for web applications are not just a trend,
but increasingly a requirement for various use cases. In this project we were
able to demonstrate different approaches to bring a live experience into the
browser without having to constantly refresh the page manually.

After studying the methods of pushing data to a client without an explicit
request, we concluded that there is not one single best option for all use cases
and that the choice is project specific. In general, our recommendation is to
use the server-sent events technology because it is simple, works with HTTP
and, unlike polling techniques, provides additional features.

After that we focused more on the architecture side of a web application
with live capabilities in mind. We have noticed that the browser is tradi-
tionally only intended to view a state at one point in time and updating the
state is usually achieved by requesting a modification on a server. This has
the disadvantage that each change must do a server round-trip for validation
purposes, which can result in a poor user experience if many updates are
sent over a short period of time.

To overcome these challenges, we decided to concentrate on an offline first ap-
proach, where changes are applied locally and then distributed asynchronously.
This enables a fast execution and an offline capable user interface, but brings
with it the additional challenge of conflict management. To resolve the con-
flicts, we have used an event-driven approach where each event is a self-
contained and immutable user action. With the idea of event sourcing, the
server manages a pure append-only log of the events and can therefore guar-
antee a total order that allows conflicts to be resolved deterministically and
therefore in a consistent way for each client.

In conclusion, we were able to create a fast, offline capable and automat-
ically synchronized web application that uses events as the source of truth
instead of an aggregated state. Along the way, we have encountered that a
real-time environment can sometimes lead to unexpected behaviours in the
user interface. It is important to be aware of the usability trade-offs that
real-time synchronization brings. In general, we recommend not to overdo
the live features, because in most cases less is usually more.

62

13.1 Outlook

There still are some unsolved issues and challenges which could be taken on
in a further research.

13.1.1 Initial State

The initial state of our kanban board is loaded by sending the entire history
form the server to the client. This approach leads to several pain points. One
problem is, that the history of events increases with time, which also increases
the initial loading time. In addition, the UI currently cannot differentiate
between events that are sent as part of the history and events that are live.
This results in not knowing exactly when the UI loading process is finished,
which in turn leads to a mistimed dispatch of the login command. This
creates conflicts for each new user, which slows down the loading process.

13.1.2 Snapshots

A solution to this complication could be to send an initial snapshot of the
state before moving to event based updates, as discussed in chapter 6.4.1.
This would require a server-side entity to record the events onto a state
object. Additionally, the UI would need to be able to visualize state in form
of an object, which it is not currently set up to do.

13.1.3 Undo/Redo

With an event based UI, which is revertible, implementing undo/redo capa-
bilities would be fairly simple taken at face value. A big challenge though,
would be to differentiate between changes made by the user which uses the
undo feature and other users. If not differentiated, users could undo and
redo changes which are not made by them.

63

13.1.4 User Authorisation

Currently, there is no way to restrict users from executing certain operations
or mutations. For example, it is not possible to only allow a specific group
of users to add and remove columns in our kanban board. This is further
complicated by the offline capabilities of the sample application.

To resolve this shortcoming, there would need to be an authentication/au-
thorisation authority on the server side. This authority should inform the
client side application of what the user is allowed to do. The information
about the user’s rights could be signed to ensure authenticity, for instance
with JWT34. The JWT token could then be stored on the client side to ensure
that the user cannot do illegal actions while being offline. Of course, the
token would have to be validated on the server with each new event being
sent.

13.1.5 Persistence

In our current approach, the entire history is stored on the server. Because
the history is an append-only operation its size increases over time. This
can eventually lead to a problem because the disk space is limited. This
challenge is also discussed in chapter 6.4.1. Furthermore, the event history
is persisted in a plain text file. To enable better performance, querying and
other capabilities, a database system could be set up that is optimized for
event sourcing.

34https://jwt.io/

64

https://jwt.io/

13.2 Reflection

The following sections contain our personal reflections about the project.

13.2.1 Robin Christen

For me, the project was very fascinating and I enjoyed the combination of the
research process and the implementation of the ideas in a practical example.
It was a challenging task because it involved a lot of uncertainty without
having a clear idea of the final goal or a predefined method. Nevertheless,
this was also the most interesting and rewarding part. It involved a lot of
trial and error, but I think the resulting learning aspect was enormous.

In addition, I particularly enjoyed the regular exchange with my team mate
and our superiors. It was a good experience to be able to talk about diffi-
culties and to receive suggestions from others, which helped us to overcome
many challenges together.

I am very happy with the outcome of this project and I am convinced that
this gathered knowledge can be used for future projects.

13.2.2 Etienne Gobeli

Since a lot of concepts explored were new, this thesis was quite the adven-
ture for me. The adventurous aspect was also the most exciting part of the
project. Each week we stumbled upon different problems and challenges,
which required solutions. Although challenging, the project was very inter-
esting and educational.

The thesis was conducted in an iterative approach and always in exchange
with the supervisors of the project. The path taken was very exciting and
constructive. Most of the coding for the proof of concept was done in a pair-
programming approach, which proofed to be very helpful and enriching.

Personally, I am pleased with what we managed to accomplish. I learned
a lot and feel like we shed light on upcoming challenges which will arise with
the advent of real-time requirements for web applications.

65

Part III

Appendix

66

References

[I F11] A. Melnikov I. Fette. The WebSocket Protocol. Tech. rep. 2011.

[GL12] Seth Gilbert and Nancy Lynch. “Clocks Are Bad, Or, Welcome to
the Wonderful World of Distributed Systems”. In: riak blog (2012).

[Osm12] Addy Osmani. Learning JavaScript Design Patterns. O’Reilly Me-
dia, 2012. Chap. 10. isbn: 9781449331818.

[Dai13] John Daily. “Perspectives on the CAP Theorem”. In: IEEE Com-
puter Magazine (2013).

[Gri13] Ilya Grigorik. High Performance Browser Networking. O’Reilly
Media, 2013. Chap. 10, pp. 920–926. isbn: 9781449344764.

[Kle16] Martin Kleppmann. Making Sense of Stream Processing. O’Reilly
Media, 2016. isbn: 9781491937280.

[Kle17] Martin Kleppmann. Designing Data-Intensive Applications. O’Reilly
Media, 2017. isbn: 9781449373320.

[Ade18] Ire Aderinokun. Bitsofcode. Dec. 2018. url: https://bitsofco.
de/understanding-the-virtual-dom/.

[Gwe18] Martin Gwerder. Lecture ”Communication in distributed Systems”.
2018.

67

https://bitsofco.de/understanding-the-virtual-dom/
https://bitsofco.de/understanding-the-virtual-dom/

List of Figures

1 HTTP’s request-response pattern 10
2 Sequence diagram for short polling 12
3 Sequence diagram for long polling 14
4 Sequence diagram for lost update in long polling 16
5 Sequence diagram for Server-Sent Events 17
6 Sequence diagram for WebSockets 20
7 Inconsistency with central state processing 27
8 Consistency with central state processing 27
9 Merging streams . 39
10 Merging streams with server 40
11 State-based render cycle . 43
12 Kanban board mockup . 51
13 Structure of the architecture 57

68

Glossary

DOM Document Object Model. 44, 45, 55, 56, 59

GUI Graphical User Interface. 41

HTML Hypertext Markup Language. 9, 45

HTTP Hypertext Transfer Protocol. 10–14, 17, 19–21, 24, 25, 54, 61

JSON JavaScript Object Notation. 9

MVP Minimum Viable Product. 52

TCP/IP Transmission Control Protocol/Internet Protocol. 10

UI User Interface. 9, 44, 45, 56, 63

UUID Universally Unique Identifier. 32

vDOM virtual Document Object Model. 44

69

Declaration of Honesty

We hereby declare that we have written the presented thesis independently,
without the help of third parties and only by using the sources stated.

Location, Date: Windisch, 20.03.2020

Names, Signatures

Etienne Gobeli Robin Christen

70

•
•
•

IMVS18: WebUI Next Generation ++

Ausgangslage
Das Vorgänger P5 Projekt untersuchte verschiedene Ansätze für moderne
Web-UI-Konstruktion. Das P6 Projekt soll auf diesen Konzepten aufbauen
und sie um sichere, asynchrone, reihenfolgetreue Kommunikationskonzepte
ergänzen.

Ziel der Arbeit
Entwicklung und Umsetzung eines belastbaren Konzepts für die sichere, asynchrone, reihenfolgetreue Kom-
munikation von anspruchsvollen Web UI mit einem Presentation-Server.
Die Kommunikation erlaubt dann

Daten auf dem Server zu verwalten
Präsentationsinformation über Geräte und Benutzer hinweg zu teilen
Ergebnisse wieder nahtlos und zeitnah in das UI einzupflegen.

Problemstellung
Viele ad-hoc Lösungen für die client-server Kommunikation von Web UIs mit einem Presentation Server sind
nicht zuverlässig genug. Es gilt, die speziellen Anforderungen an Bandbreite und Latenz strukturell und algo-
rithmisch erfüllbar zu machen.

Technologien/Fachliche Schwerpunkte/Referenzen
Java, JavaScript

Bemerkung
Dieses Projekt ist für Etienne Gobeli und Robin Christen reserviert.

Betreuer: Dierk König Priorität 1 Priorität 2
Dieter Holz Arbeitsumfang: P6 (360h pro

Student)

Teamgrösse: 2er Team ---
Sprachen: Deutsch oder Englisch

Studiengang Informatik/IMVS/Studierendenprojekte 19HS

71

	Summary
	Introduction
	Motivation
	Objective
	Problem Statement
	Methodology
	Scope

	I Technical Report
	Web Environment
	Client
	Server
	HTTP

	Two-way Communication
	Short Polling
	Long Polling
	Server-Sent Events
	WebSockets
	Comparison

	State Distribution
	Single Master
	Multiple Masters
	CAP Theorem
	Conclusion

	Conflict Management
	Conflict
	Prevention
	Convergence
	Ordering

	Event-Driven
	Event Sourcing
	Stream Processing
	Advantages
	Limitations

	Conflicting History
	Resolution
	GUI Adjustments
	Projection Conflicts
	Impacts

	View Rendering
	Data based
	Event based

	Usability
	Coupled View
	Impact of Conflicts
	Offline Management
	Too Much Real-Time

	II Proof of Concept
	Project
	Requirements
	Iterations

	Architecture
	Event
	Store
	Scheduler
	API
	DOM Projection
	Controller
	View
	Overview

	Implementation
	End-to-End Events
	View Rendering
	Conflict Management
	Server

	Conclusion
	Outlook
	Reflection

	III Appendix
	References
	List of Figures
	Glossary
	Declaration of Honesty

